On rough weighted ideal convergence of triple sequence of Bernstein polynomials

Bipan Hazarika^{1,*}, N. Subramanian² and Ayhan Esi³

Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh-791112, Arunachal Pradesh, India

ABSTRACT. We introduce and study some basic properties of rough I_{λ} -convergent of weight g, where $g: \mathbb{N}^3 \to [0,\infty)$ is a function satisfying $g(m,n,k) \to \infty$ and $\frac{[(m,n,k)]}{g(m,n,k)} \not\to 0$ as $m,n,k \to \infty$, of triple sequence of Bernstein polynomials and also investigate certain properties of rough I_{λ} -convergence of weight g.

Keywords: triple sequences, rough convergence, closed and convex, cluster points and rough limit points, Bernstein polynomials, I-statistical convergence of order a.

Mathematics Subject Classification (2000): 40F05, 40J05, 40G05.

1. Introduction

Kostyrko et al. [15] and Nuray and Ruckle [18] independently studied in details about the notion of ideal convergence which is based on the structure of the admissible ideal I of subsets of natural numbers $\mathbb N$. Later on it was further investigated by many authors, e.g. Šalát et al [25], Hazarika and Mohiuddine [14], and references therein.

Let S be a non-empty set. Then a non empty class $I \subseteq P(S)$ is said to be an *ideal* on S if and only if (i) $\phi \in I$. (ii) I is additive under union (iii) hereditary. An ideal $I \subseteq P(S)$ is said to be *non trivial* if $I \neq \phi$ and $S \notin I$. A non-empty family of sets $F \subseteq P(S)$ is said to be a *filter* on S if and only if (i) $\phi \notin F$ (ii) for each $A, B \in F$ we have $A \cap B \in F$ (iii) for each $A \in F$ and $B \supset A$, implies $B \in F$. For each ideal I, there is a filter F(I) corresponding to I i.e. $F(I) = \{K \subseteq S : K^c \in I\}$, where $K^c = S - K$. We say that a non-trivial ideal $I \subseteq P(S)$ is (i) an *admissible ideal* on S if and only if it contains all singletons, i.e. if it contains $\{\{x\} : x \in S\}$ (ii) *maximal*, if there cannot exists any non-trivial ideal $I \neq I$ containing I as a subset (iii) is said to be a *translation invariant ideal* if $\{k+1 : k \in A\} \in I$, for any $A \in I$. Recall that a sequence I if I if or every I of points in I is said to be I-convergent to the number I (denoted by I-I im I if for every I on I the set I if I is I if I if I is I if I if I if I if I if I if I is I if I if

The idea of rough convergence was first introduced by Phu [20, 21, 22] in finite dimensional normed spaces. He showed that the set LIM_x^T is bounded, closed and

² Department of Mathematics, SASTRA University, Thanjavur-613 401, India ³Department of Mathematics, Adiyaman University, 02040, Adyaman, Turkey. Email: bipan.hazarika@rgu.ac.in/bh_rgu@yahoo.co.in; nsmaths@yahoo.com; aesi23@hotmail.com

^{*} Corresponding author.

convex; and he introduced the notion of rough Cauchy sequence. He also investigated the relations between rough convergence and other convergence types and the dependence of LIM_r^r on the roughness of degree r. Aytar [1] studied of rough statistical convergence and defined the set of rough statistical limit points of a sequence and obtained to statistical convergence criteria associated with this set and prove that this set is closed and convex. Also, Aytar [2] studied that the r-limit set of the sequence is equal to intersection of these sets and that r-core of the sequence is equal to the union of these sets. Dündar and Cakan [6] investigated of rough ideal convergence and defined the set of rough ideal limit points of a sequence. Dündar [8] introduced rough ideal convergence for double sequences. In [24], Sahiner and Tripathy introduced the notion of I-convergence of a triple sequences, which is based on the structure of the ideal I of subsets of $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$, where \mathbb{N} is the set of all natural numbers, is a natural generalization of the notion of convergence and statistical convergence. The different types of notions of triple sequence was introduced and investigated by Sahiner et al. [23]. Later on further studied by Esi [9, 13], Esi and Catalbas [10], Esi and Şavas [11], Esi et al. [12], Dutta et al. [4], Debnath et al. [5], Malik and Maity [16], Pal et al. [19], Şavas and Esi [26], Tripathy and Goswami [29] and many others.

Given an increasing function $\phi: \mathbb{N} \to (0, \infty)$ with $\lim_{n \to \infty} \phi(n) = \infty$, Niculescu and Prajitura [17] define the upper density of weight ϕ by the formula

$$\bar{d}_{\phi}(A) = \limsup_{n \to \infty} \frac{|A \cap [1, n]|}{\phi(n)},$$

where $A \subset \mathbb{N}$, and |.| denote the cardinality of a set.

Let $\omega = \{0, 1, 2,\}$, and a function $g : \omega \to [0, \infty)$, where $\lim_{n \to \infty} g(n) = \infty$, and $\frac{n}{g(n)} \to 0$ as $n \to \infty$. Denote G the set of all such functions g. Balcerzak et al. [3] define the upper density of weight g by the formula

$$\bar{d}_g(A) = \limsup_{n \to \infty} \frac{\operatorname{card}(A \cap n)}{g(n)} \text{ for } A \subset \omega.$$

Consider the family $\mathcal{Z}_g = \{A \subset \omega : \bar{d}_g(A) = 0\}$. Obviously \mathcal{Z}_g is an ideal of ω .

Based on this idea, recently Savas [27] introduced I_{λ} -statistical convergence of weight g for real sequence and proved some interesting results.

In this paper we investigate some basic properties of rough wighted I-convergence of a triple sequence of Bernstein polynomials in three dimensional cases which are not earlier. We study the set of all rough wighted I-limits of a triple sequence of Bernstein polynomials and also the relation between analyticness and rough wighted I-convergence of a triple sequence of Bernstein polynomials.

Let U be a subset of the set of positive integers $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ and let us denote the set $U_{ik\ell} = \{(m, n, k) \in U : m \geq i, n \leq j, k \leq \ell\}$. Then the natural density of U is given by

$$\delta_3\left(U\right) = \lim_{i,j,\ell \to \infty} \frac{\left|U_{ij\ell}\right|}{ij\ell},$$

where $|U_{ij\ell}|$ denotes the number of elements in $U_{ij\ell}$.

In [28], Stancu introduced the polynomials of Bernstein type of two variables. For a given continuous function f defined on $D = [0,1] \times [0,1] \times [0,1]$. The Bernstein polynomials of three variables defined on C(D) by

$$\bar{B} = B_{mnk}(f; x, y, z) = \sum_{r=0}^{m} \sum_{s=0}^{n} \sum_{t=0}^{k} a_{m,r}(x) b_{n,s}(y) c_{k,t}(z) f\left(\frac{r}{m}, \frac{s}{n}, \frac{t}{k}\right),$$

where

$$a_{m,r}(x) = \binom{m}{r} x^r (1-x)^{m-r};$$

$$b_{n,s}(y) = \binom{n}{s} y^s (1-y)^{n-s}$$

and

$$c_{k,t}(z) = \binom{k}{t} z^t (1-z)^{k-t}.$$

Throughout the paper, \mathbb{R}^3 denotes the real of three dimensional space with usual metric. Consider a triple sequence of Bernstein polynomials $(B_{mnk}(f; x, y, z))$ such that $(B_{mnk}(f; x, y, z))$ belong to \mathbb{R}^3 , for $m, n, k \in \mathbb{N}$.

Let f be a continuous function defined on D. A triple sequence of Bernstein polynomials $(B_{mnk}(f;x,y,z))$ is said to be statistically convergent to $f(x,y,z) \in \mathbb{R}^3$, written as $st - \lim B_{mnk}(f;x,y,z) = f(x,y,z)$, provided that the set

$$U_{\epsilon} := \{ (m, n, k) \in \mathbb{N}^3 : |B_{mnk}(f; x, y, z) - f(x, y, z)| \ge \epsilon \}$$

has natural density zero for any $\epsilon > 0$. In this case, 0 is called the statistical limit of the triple sequence of Bernstein polynomials. i.e., $\delta_3\left(U_{\epsilon}\right) = 0$. That is,

$$\lim_{rst \to \infty} \frac{1}{rst} \left| \{ (m, n, k) \le (r, s, t) : |B_{mnk}(f; x, y, z) - f(x, y, z)| \ge \epsilon \} \right| = 0.$$

In this case, we write $st_3 - \lim B_{mnk}(f; x, y, z) = f(x, y, z)$ or $B_{mnk}(f; x, y, z) \xrightarrow{st_3} f(x, y, z)$.

Throughout the paper we denote χ_A —the characteristic function of $A \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$. A subset A of $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ is said to have asymptotic density $d_3(A)$ if

$$d_3(A) = \lim_{ij\ell \to \infty} \frac{1}{ij\ell} \sum_{m=1}^{i} \sum_{n=1}^{j} \sum_{k=1}^{\ell} \chi_A(x).$$

A triple sequence (real or complex) can be defined as a function $x : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ (\mathbb{C}), where \mathbb{C} denote the set of complex numbers.

2. Definitions and Preliminaries

Throughout the paper \mathbb{R}^3 denotes the real three dimensional case with the metric. Consider a triple sequence $x=(x_{mnk})$ such that $x_{mnk}\in\mathbb{R}^3; m,n,k\in\mathbb{N}$. Also I is an admissible ideal of $2^{\mathbb{N}^3}$. The following definition are obtained:

Definition 2.1. Let f be a continuous function defined on D. A triple sequence of Bernstein polynomials $(B_{mnk}(f;x,y,z))$ is said to be statistically convergent to f(x,y,z) denoted by $B_{mnk}(f;x,y,z) \xrightarrow{st_3} f(x,y,z)$, provided that the set

$$\left\{ \left(m,n,k\right)\in\mathbb{N}^{3}:\left|B_{mnk}\left(f;x,y,z\right)-f\left(x,y,z\right)\right|\geq\epsilon\right\} ,$$

has natural density zero for every $\epsilon > 0$.

In this case, f(x, y, z) is called the statistical limit of the sequence of Berstein polynomials.

Definition 2.2. Let f be a continuous function defined on D. A triple sequence of Bernstein polynomials $(B_{mnk}(f;x,y,z))$ in a metric space $(\mathbb{R}^3,|.,.|)$ and r be a non-negative real number is said to be r-convergent to f(x,y,z), denoted by $B_{mnk}(f;x,y,z) \xrightarrow{r} f(x,y,z)$, if for any $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that for all $m,n,k \geq N_{\epsilon}$ we have

$$|B_{mnk}(f; x, y, z) - f(x, y, z)| < r + \epsilon$$

In this case f(x, y, z) is called an r-limit of $B_{mnk}(f; x, y, z)$.

Remark 2.3. We consider r-limit set of $B_{mnk}(f; x, y, z)$ which is denoted by $LIM_{\bar{B}}^r$ and is defined by

$$LIM_{\bar{B}}^{r} = \left\{ B_{mnk}\left(f; x, y, z\right) \in \mathbb{R}^{3} : B_{mnk}\left(f; x, y, z\right) \xrightarrow{r} f\left(x, y, z\right) \right\}.$$

Definition 2.4. Let f be a continuous function defined on D. A triple sequence of Bernstein polynomials $(B_{mnk}(f;x,y,z))$ is said to be r-convergent if $LIM_{\bar{B}}^r \neq \phi$ and r is called a rough convergence degree of $B_{mnk}(f;x,y,z)$. If r=0 then it is ordinary convergence of triple sequence of Bernstein polynomials.

Definition 2.5. Let f be a continuous function defined on D. A triple sequence of Bernstein polynomials $(B_{mnk}(f;x,y,z))$ in a metric space $(\mathbb{R}^3,|.,.|)$ and r be a nonnegative real number is said to be r-statistically convergent to f(x,y,z), denoted by $B_{mnk}(f;x,y,z) \xrightarrow{r-st_3} f(x,y,z)$, if for any $\epsilon > 0$ we have $d_3(A(\epsilon)) = 0$, where

$$A\left(\epsilon\right) = \left\{ \left(m, n, k\right) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \left|B_{mnk}\left(f; x, y, z\right) - f\left(x, y, z\right)\right| \ge r + \epsilon \right\}.$$

In this case f(x, y, z) is called r-statistical limit of $B_{mnk}(f; x, y, z)$. If r = 0 then it is ordinary statistical convergent of triple sequence of Bernstein polynomials.

3. Rough I_{λ} -convergence

Definition 3.1. Let f be a continuous function defined on D. A triple sequence of Bernstein polynomials $(B_{mnk}(f;x,y,z))$ in a metric space $(\mathbb{R}^3,|.,.|)$ and r be a non-negative real number, is said to be rough λ -ideal convergent of weight g or $(rI_{\lambda})^g$ -convergent to f(x,y,z), denoted by $B_{mnk} \xrightarrow{(rI_{\lambda})^g} f(x,y,z)$, if for any $\epsilon > 0$ we have

$$\left\{p,q,j\in\mathbb{N}^3: \frac{1}{g(\lambda_{pqj})}\left|B_{mnk}\left(f;x,y,z\right)-f\left(x,y,z\right)\right|\geq r+\epsilon\right\}\in I.$$

In this case f(x,y,z) is called rI_{λ} -limit of $(B_{mnk}(f;x,y,z))$ and a triple sequence of Bernstein polynomials $(B_{mnk}(f;x,y,z))$ is called rough I_{λ} -convergent weight g to f(x,y,z) with r as roughness of degree. If r=0 then it is ordinary I_{λ} -convergent of weight g. We denote $(rI_{\lambda})^g$ the set of all rough λ -ideal convergent of weight g of triple sequence of Bernstein polynomials.

Note 3.2. It is clear that rI_{λ}^g -limit is not necessarily unique.

Definition 3.3. Consider rI^g_{λ} -limit set of $B_{mnk}(f;x,y,z)$, which is denoted by

$$I_{\lambda}^{g} - LIM_{\bar{B}}^{r} = \left\{ f\left(x, y, z\right) \in \mathbb{R}^{3} : B_{mnk}\left(f; x, y, z\right) \xrightarrow{(rI_{\lambda})^{g}} f\left(x, y, z\right) \right\},\,$$

then the triple sequence of Bernstein polynomials $(B_{mnk}(f;x,y,z))$ is said to be rI_{λ} -convergent of weight g, if $I^g_{\lambda} - LIM^r_{\bar{B}} \neq \phi$ and r is called degree of rough I_{λ} -convergence of weight g of $B_{mnk}(f;x,y,z)$.

Let $\lambda=(\lambda_{pqj})_{p,q,j\in\mathbb{N}}$ be a non-decreasing sequence of positive numbers tending to ∞ such that

$$\lambda_{(pqj)+1} \le \lambda_{pqj} + 1, \lambda_{111} = 1.$$

The collection of such sequences λ will be denoted by η .

We define the generalized de la Valée-Poussin mean of weight g by

$$t_{pqj}\left(x\right) = \frac{1}{g(\lambda_{pqj})} \sum_{(m,n,k)\in I_{pqj}} x_{mnk}.$$

where $I_{rst} = [(pqj) - \lambda_{pqj+1}, pqj]$.

Definition 3.4. Let f be a continuous function defined on D. A triple sequence of Bernstein polynomials $(B_{mnk}(f; x, y, z))$ is said to be $[V, \lambda](I)^g$ –summable to f(x, y, z), if

$$I - \lim_{pqj} t_{pqj} \left(B_{mnk} \left(f; x, y, z \right) \right) = f \left(x, y, z \right).$$

i.e., for any $\epsilon > 0$,

$$\left\{\left(p,q,j\right)\in\mathbb{N}^{3}:\left|t_{pqj}\left(B_{mnk}\left(f;x,y,z\right)\right)-f\left(x,y,z\right)\right|\geq\epsilon\right\}\in I$$

and it is denoted by $[V, \lambda](I)^g$.

Definition 3.5. et f be a continuous function defined on D. A triple sequence of Bernstein polynomials $(B_{mnk}(f;x,y,z))$ is said to be rough I_{λ} -statistically convergent of weight g, if for every $\epsilon > 0$ and $\delta > 0$ the set

$$\left\{(p,q,j)\in\mathbb{N}^3:\frac{1}{g(\lambda_{pqj})}\left|\left\{(m,n,k)\in I_{pqj}:\left|B_{mnk}\left(f;x,y,z\right)-f\left(x,y,z\right)\right|\geq r+\epsilon\right\}\right|\geq\delta\right\}$$
 belong to I. In this case we write $(rS(I_{\lambda}))^g-\lim B_{mnk}\left(f;x,y,z\right)=f\left(x,y,z\right)$. Or $B_{mnk}\left(f;x,y,z\right)\xrightarrow{(rS(I_{\lambda}))^g}f\left(x,y,z\right)$.

Definition 3.6. Let f be a continuous function defined on D. A triple sequence of Bernstein polynomials $(B_{mnk}(f;x,y,z))$ is said to be $[V,\lambda](rI)^g$ –summable to f(x,y,z), if for any $\epsilon > 0$,

$$\left\{ \left(p,q,j\right)\in\mathbb{N}^{3}:\left|t_{pqj}\left(B_{mnk}\left(f;x,y,z\right)\right)-f\left(x,y,z\right)\right|\geq r+\epsilon\right\} \in I$$
 and it is denoted by $\left[V,\lambda\right]\left(rI\right)^{g}$.

Theorem 3.7. Let f be a continuous function defined on D. A triple sequence of Bernstein polynomials of $(B_{mnk}(f;x,y,z))$ of real numbers and $g_1,g_2\in G$ be such that there exist M>0 and $u_0,v_0,w_0\in \mathbb{N}$ such that $\frac{g_1(\lambda_{pqj})}{g_2(\lambda_{pqj})}\leq M$ for all $(p,q,j)\geq (u_0,v_0,w_0)$. Then $(rS(I_\lambda))^{g_1}\subset (rS(I_\lambda))^{g_2}$.

Proof. For any $\epsilon > 0$,

$$\begin{split} & \frac{|\{(m,n,k) \in I_{pqj} : |B_{mnk}\left(f;x,y,z\right) - f\left(x,y,z\right)| \geq r + \epsilon\}|}{g_2\left(\lambda_{pqj}\right)} \\ & = \frac{g_1\left(\lambda_{pqj}\right)|\{(m,n,k) \in I_{pqj} : |B_{mnk}\left(f;x,y,z\right) - f\left(x,y,z\right)| \geq r + \epsilon\}|}{g_2\left(\lambda_{pqj}\right)g_1\left(\lambda_{pqj}\right)} \\ & \leq M \frac{|\{(m,n,k) \in I_{pqj} : |B_{mnk}\left(f;x,y,z\right) - f\left(x,y,z\right)| \geq r + \epsilon\}|}{g_1\left(\lambda_{pqj}\right)} \end{split}$$

for $(p,q,j) \geq (u_0,v_0,w_0)$. Thus for any $\delta > 0$,

$$\left\{ (p,q,j) \in \mathbb{N}^3 : \frac{1}{g_2(\lambda_{pqj})} \left| \{ (m,n,k) \in I_{pqj} : |B_{mnk}(f;x,y,z) - f(x,y,z)| \ge r + \epsilon \} \right| \ge \delta \right\}$$

$$\subset \left\{ (p,q,j) \in \mathbb{N}^3 : \frac{1}{g_1(\lambda_{pqj})} \left| \{ (m,n,k) \in I_{pqj} : |B_{mnk}(f;x,y,z) - f(x,y,z)| \ge r + \epsilon \} \right| \ge \frac{\delta}{M} \right\}$$

$$\cup \left\{ 1, 2, \dots, (u_0, v_0, w_0) \right\}.$$

If $(B_{mnk}(f; x, y, z)) \in (rS(I_{\lambda}))^{g_1}$, then from the above result we get $(rS(I_{\lambda}))^{g_1} \subset (rS(I_{\lambda}))^{g_2}$.

Theorem 3.8. Let $(B_{mnk}(f; x, y, z))$ be a triple sequence of Bernstein polynomials of real numbers. Then $(rS(I))^g \subset (rS(I_\lambda))^g$ if $\liminf_{p \neq j} \frac{g(\lambda_{pqj})}{g(pqj)} > 0$.

Proof. Given that $\liminf_{p\neq j} \frac{g(\lambda_{pqj})}{g(pqj)} > 0$, then we can find a M > 0 such that for sufficiently large (p,q,j), $\frac{g(\lambda_{pqj})}{g(pqj)} \geq M$.

Suppose $B_{mnk}\left(f;x,y,z\right) \xrightarrow{(rS(I))^g} f\left(x,y,z\right)$, hence for every $\epsilon>0$ and sufficiently large (r,s,t),

$$\begin{split} &\frac{1}{g\left(pqj\right)}\left|\left\{ (m,n,k) \leq (p,q,j) : \left| B_{mnk}\left(f;x,y,z\right) - f\left(x,y,z\right) \right| \geq r + \epsilon \right\}\right| \\ &\geq \frac{1}{g\left(\lambda_{pqj}\right)}\left|\left\{ (m,n,k) \in I_{pqj} : \left| B_{mnk}\left(f;x,y,z\right) - f\left(x,y,z\right) \right| \geq r + \epsilon \right\}\right| \\ &\geq M\frac{1}{g\left(\lambda_{pqj}\right)}\left|\left\{ (m,n,k) \in I_{pqj} : \left| B_{mnk}\left(f;x,y,z\right) - f\left(x,y,z\right) \right| \geq r + \epsilon \right\}\right|. \end{split}$$

Then for any $\delta > 0$,

$$\left\{ (p,q,j) \in \mathbb{N}^3 : \frac{1}{g\left(\lambda_{pqj}\right)} \left| \left\{ (m,n,k) \in I_{pqj} : \left| B_{mnk}\left(f;x,y,z\right) - f\left(x,y,z\right) \right| \ge r + \epsilon \right\} \right| \ge \delta \right\}$$

$$\subset \left\{ (p,q,j) \in \mathbb{N}^3 : \frac{1}{g\left(pqj\right)} \left| \left\{ (m,n,k) \in I_{pqj} : \left| B_{mnk}\left(f;x,y,z\right) - f\left(x,y,z\right) \right| \ge r + \epsilon \right\} \right| \ge M\delta \right\}$$

$$\in I, \text{ since } I \text{ is admissible ideal}$$

The result follows from the above inclusion.

Theorem 3.9. Let $(B_{mnk}(f,x))$ be a triple sequence of Bernstein polynomials of real numbers. If $\lambda \in \eta$ be such that $\lim_{p \neq j} \frac{(pqj) - \lambda_{pqj}}{g(pqj)} = 0$, then $(rS(I_{\lambda}))^g \subset (rS(I))^g$.

Proof. Let $\delta > 0$ be given. Since $\lim_{p \neq j} \frac{(pqj) - \lambda_{pqj}}{g(pqj)} = 0$, so we can choose $(u, v, w) \in \mathbb{N}^3$ such that $\frac{(pqj) - \lambda_{pqj}}{g(pqj)} < \frac{\delta}{2}$ for all $(p, q, j) \geq (u, v, w)$. Now for $\epsilon > 0$ we have

$$\begin{split} &\frac{1}{g\left(\lambda_{pqj}\right)}\left|\{(m,n,k)\leq(p,q,j):\left|B_{mnk}\left(f;x,y,z\right)-f\left(x,y,z\right)\right|\geq r+\epsilon\}\right|\\ &=\frac{1}{g\left(\lambda_{pqj}\right)}\left|\{(m,n,k)\leq(p,q,j)-\lambda_{pqj}:\left|B_{mnk}\left(f;x,y,z\right)-f\left(x,y,z\right)\right|\geq r+\epsilon\}\right|\\ &+\frac{1}{g\left(\lambda_{pqj}\right)}\left|\{(m,n,k)\in I_{pqj}:\left|B_{mnk}\left(f;x,y,z\right)-f\left(x,y,z\right)\right|\geq r+\epsilon\}\right|\\ &\leq\frac{(pqj)-\lambda_{pqj}}{g\left(pqj\right)}+\frac{1}{g\left(\lambda_{pqj}\right)}\left|\{(m,n,k)\in I_{pqj}:\left|B_{mnk}\left(f;x,y,z\right)-f\left(x,y,z\right)\right|\geq r+\epsilon\}\right|\\ &\leq\frac{\delta}{2}+\frac{1}{g\left(\lambda_{pqj}\right)}\left|\{(m,n,k)\in I_{pqj}:\left|B_{mnk}\left(f;x,y,z\right)-f\left(x,y,z\right)\right|\geq r+\epsilon\}\right| \end{split}$$

for all $(p, q, j) \ge (u, v, w)$. Therefore

$$\left\{ (p,q,j) \in \mathbb{N}^3 : \frac{1}{g(\lambda_{pqj})} \left| \left\{ (m,n,k) \le (p,q,j) \in I_{pqj} : \left| B_{mnk} \left(f; x,y,z \right) - f \left(x,y,z \right) \right| \ge r + \epsilon \right\} \right| \ge \delta \right\}$$

$$\subset \left\{ (p,q,j) \in \mathbb{N} : \frac{1}{g(\lambda_{pqj})} \left| \left\{ (m,n,k) \in I_{pqj} : \left| B_{mnk} \left(f; x,y,z \right) - f \left(x,y,z \right) \right| \ge r + \epsilon \right\} \right| \ge \frac{\delta}{2} \right\}$$

$$\cup \left\{ (1,1,1), (2,2,2), (3,3,3) \cdots, (u,v,w) \right\}.$$

Hence a triple sequence of Bernstein polynomials of $B_{mnk}(f; x, y, z)$ is rough *I*-statistically convergent of weight g to f(x, y, z).

Theorem 3.10. Let $(B_{mnk}(f; x, y, z))$ be a triple sequence of Bernstein polynomials of real numbers, $g_1, g_2 \in G$ and let $\lambda = (\lambda_{pqj}), \mu = (\mu_{rst})$ be two sequences in η such that $\lambda_{pqj} \leq \mu_{pqj}$ for all $p, q, j \in \mathbb{N}$ if

$$\liminf_{p \neq j} \frac{g_1(\lambda_{pqj})}{g_2(\mu_{pqj})} > 0$$
(3.1)

then $(rS(I_{\mu}))^{g_2} \subset (rS(I_{\lambda}))^{g_1}$.

Proof. Suppose that $\lambda_{pqj} \leq \mu_{pqj}$ for all $(p,q,j) \in \mathbb{N}^3$ and let (3.1) be satisfied. Now for given $\epsilon > 0$ we have

$$\{(m, n, k) \in J_{pqj} : |B_{mnk}(f; x, y, z) - f(x, y, z)| \ge r + \epsilon\}$$

$$\supseteq \{(m, n, k) \in I_{pqj} : |B_{mnk}(f; x, y, z) - f(x, y, z)| \ge r + \epsilon\},$$

where $I_{pqj} = [(pqj) - \lambda_{pqj} + 1, (pqj)]$ and $J_{pqj} = [(pqj) - \mu_{pqj} + 1, (pqj)]$. Therefore we have

$$\frac{1}{g_{2}(\mu_{pqj})} \left| \{ (m, n, k) \in J_{pqj} : |B_{mnk}(f; x, y, z) - f(x, y, z)| \ge r + \epsilon \} \right|
\ge \frac{g_{1}(\lambda_{pqj})}{g_{2}(\mu_{pqj})} \frac{1}{g_{2}(\lambda_{pqj})} \left| \{ (m, n, k) \in I_{pqj} : |B_{mnk}(f; x, y, z) - f(x, y, z)| \ge r + \epsilon \} \right|$$

for all $p, q, j \in \mathbb{N}^3$. So, we get

$$\left\{ (p,q,j) \in \mathbb{N}^3 : \frac{1}{g_1(\lambda_{pqj})} \left| \{ (m,n,k) \in I_{pqj} : |B_{mnk}(f;x,y,z) - f(x,y,z)| \ge r + \epsilon \} \right| \ge \delta \right\} \subseteq$$

$$\left\{ (p,q,j) \in \mathbb{N}^3 : \frac{1}{g_2(\lambda_{pqj})} \left| \{ (m,n,k) \le (p,q,j) \in J_{pqj} : |B_{mnk}(f;x,y,z) - f(x,y,z)| \ge r + \epsilon \} \right|$$

$$\ge \delta \frac{g_2(\lambda_{pqj})}{g_1(\mu_{pqj})} \right\} \in I.$$

Hence $(rS(I_n))^{g_2} \subset (rS(I_n))^{g_1}$.

Theorem 3.11. Let $(B_{mnk}(f,x))$ be a triple sequence of Bernstein polynomials of real numbers, if $\{\lambda_{pqj}\} \in \eta$. Then $B_{mnk}(f;x,y,z) \to f(x,y,z)[V,\lambda](rI)^g \Longrightarrow B_{mnk}(f;x,y,z) \to f(x,y,z)(rS(I_{\lambda}))^g$ and $(I_{\lambda})^g \subsetneq [V,\lambda](I)^g$ for every ideal I.

Proof. Let $\epsilon > 0$ and $B_{mnk}\left(f; x, y, z\right) \to f\left(x, y, z\right) \left[V, \lambda\right] (rI)^g$, we have

Let
$$\epsilon > 0$$
 and $B_{mnk}(f; x, y, z) \to f(x, y, z)[V, \lambda](rI)^g$, we have
$$\sum_{\substack{(m,n,k) \in I_{pqj} \\ |B_{mnk}(f; x, y, z) - f(x, y, z)|}} |B_{mnk}(f; x, y, z) - f(x, y, z)|$$

$$\geq \sum_{\substack{(m,n,k) \in I_{pqj} \\ |B_{mnk}(f; x, y, z) - f(x, y, z)| > r + \epsilon}} |B_{mnk}(f; x, y, z) - f(x, y, z)| \geq r + \epsilon} |E_{mnk}(f; x, y, z) - f(x, y, z)| \geq r + \epsilon \}|.$$

Given $\delta > 0$,

$$\frac{1}{g\left(\lambda_{pqj}\right)}\left|\left\{\left(m,n,k\right)\in I_{pqj}:\left|B_{mnk}\left(f;x,y,z\right)-f\left(x,y,z\right)\right|\geq r+\epsilon\right\}\right|\geq\delta$$

$$\Longrightarrow\frac{1}{g\left(\lambda_{pqj}\right)}\sum_{(m,n,k)\in I_{pqj}}\left|B_{mnk}\left(f;x,y,z\right)-f\left(x,y,z\right)\right|\geq\epsilon\delta.$$

i.e.,

$$\left\{ (p,q,j) \in \mathbb{N}^3 : \frac{1}{g(\lambda_{pqj})} \left| \left\{ (m,n,k) \in I_{pqj} : \left| B_{mnk} \left(f; x,y,z \right) - f \left(x,y,z \right) \right| \ge r + \epsilon \right\} \right| \ge \delta \right\}$$

$$\subset \left\{ (p,q,j) \in \mathbb{N}^3 : \frac{1}{g(\lambda_{pqj})} \left\{ \sum_{(m,n,k) \in I_{pqj}} \left| B_{mnk} \left(f; x,y,z \right) - f \left(x,y,z \right) \right| \right\} \ge \epsilon \delta. \right\}$$

since $B_{mnk}(f; x, y, z) \to f(x, y, z) [V, \lambda] (rI)^g$ and hence it follows that $B_{mnk}(f; x, y, z) \to$ $f(x,y,z)(rS(I_{\lambda}))^g$ for proper ideal of I.

Now to prove that $(rS(I_{\lambda}))^g \subseteq [V,\lambda] (rI)^g$, take a fixed element $V \in I$. A triple sequence Bernstein polynomials defined by

$$B_{mnk}\left(f:x,y,z\right) = \begin{cases} \left(m,n,k\right) & \text{for } \left(p,q,j\right) - \left[\sqrt{g\left(\lambda_{pqj}\right)}\right] + 1 \leq \left(m,n,k\right) \leq \left(p,q,j\right), \left(p,q,j\right) \notin V \\ \left(m,n,k\right) & \text{for } \left(p,q,j\right) - \lambda_{pqj} + 1 \leq \left(m,n,k\right) \leq \left(p,q,j\right), \left(p,q,j\right) \in V \\ 0 & \text{otherwise} \end{cases}$$

for every $\epsilon > 0 \, (0 < \epsilon < 1)$, since

$$\frac{1}{g(\lambda_{pqj})} \left| \left\{ (m, n, k) \in I_{pqj} : \left| B_{mnk} \left(f; x, y, z \right) \right| \ge r + \epsilon \right\} \right| = \frac{\left[\sqrt{g(\lambda_{pqj})} \right]}{g(\lambda_{pqj})} \to 0 \text{ as } p, q, j \to 0$$

 ∞ and $(p, q, j) \notin V$, for every $\delta > 0$,

$$\left\{ (p,q,j) \in \mathbb{N}^3 : \frac{1}{g(\lambda_{pqj})} \left| \{ (m,n,k) \in I_{pqj} : |B_{mnk}(f;x,y,z) - f(x,y,z)| \ge r + \epsilon \} \right| \ge \delta \right\}$$

$$\subset V \cup \{ (1,1,1), (2,2,2), (3,3,3) \cdots, (u,v,w) \} \text{ for some } (u,v,w) \in \mathbb{N}^3.$$

Since I is admissible of weight g, it follows that $B_{mnk}\left(f;x,y,z\right)\to 0\left(rS(I_{\lambda})\right)^{g}$. Hence

$$\frac{1}{g(\lambda_{pqj})} \sum_{(m,n,k) \in I_{pqj}} \left| B_{mnk} \left(f; x,y,z \right) \right| \to \infty \text{ as } p,q,j \to \infty$$

i.e $B_{mnk}(f; x, y, z) \not\to 0 [V, \lambda] (rI)^g$, if $V \in I$ is infinite then $B_{mnk}(f; x, y, z) \not\to \theta (rS(I_{\lambda}))^g$.

Competing Interests: The authors declare that there is not any conflict of interests regarding the publication of this manuscript.

References

- [1] S. Aytar, Rough statistical convergence, Numer. Funct. Anal. Optimiz. 29(3-4)(2008) 291-303.
- [2] S. Aytar, The rough limit set and the core of a real sequence, Numer. Funct. Anal. Optimiz. 29(3-4)(2008) 283-290.
- [3] M. Balcerzak, P. Das, M. Filipczak, and J. Swaczyna, Generalized kinds of density and the associated ideals, Acta Math. Hungar. 147(1)(2015) 97-115.
- [4] A. J. Dutta, A. Esi, B.C. Tripathy, Statistically convergent triple sequence spaces defined by Orlicz function, J. Math. Anal. 4(2)(2013) 16-22.
- [5] S. Debnath, B. Sarma, B.C. Das, Some generalized triple sequence spaces of real numbers, J. Nonlinear Anal. Optimiz. 6(1) (2015) 71-79.
- [6] E. Dündar, C. Çakan, Rough I-convergence, Demonstratio Math. XLVII(3)(2014) 638-651.
- [7] E. Dündar, C. Çakan, Rough convergence of double sequences, Gulf J. Math. 2(1)(2014) 45-51.
- [8] E. Dündar, On Rough \(\mathcal{I}_2\)-Convergence of Double Sequences, Numer. Funct. Anal. Optimiz. 37(4)(2016) 480-491.
- [9] A. Esi, On some triple almost lacunary sequence spaces defined by Orlicz functions, Research and Reviews: Discrete Math. Structures 1(2)(2014) 16-25.
- [10] A. Esi, M. Necdet Catalbas, Almost convergence of triple sequences, Global J. Math. Anal. 2(1)(2014) 6-10.
- [11] A. Esi, E. Şavas, On lacunary statistically convergent triple sequences in probabilistic normed space, Appl. Math. Inf. Sci. 9(5)(2015) 2529-2534.
- [12] A. Esi, S. Araci, M. Acikgoz, Statistical Convergence of Bernstein Operators, Appl. Math. Inf. Sci. 10(6) (2016) 2083-2086.
- [13] A. Esi λ₃-Statistical convergence of triple sequences on probabilistic normed space, Global J. Math. Anal. 1(2) (2013) 29-36
- [14] B. Hazarika, S. A.Mohiuddine, Ideal convergence of random variables, J. Func. Spaces Appl. 2013(2013), Article ID 148249, 7 pages.
- [15] P. Kostyrko, T. Šalát, W. Wilczyśki, On I-convergence, Real Analysis Exchange 26(2)(2000-2001) 669-686.
- [16] P. Malik, M. Maity, On rough statistical convergence of double sequences in normed linear spaces, Afr. Mat. 27(1)(2016) 141-148.
- [17] C.P. Niculescu, G.T. Prajitura, Some open problems concerning the convergence of positive series, Ann. Acad. Rom. Sci. Ser. Math. Appl. 6(2014) 92-107.
- [18] F. Nuray, W. H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245(2000) 513-527.
- [19] S. K. Pal, D. Chandra, S. Dutta, Rough Ideal Convergence, *Hacettepe J. Math. Stat.* 42(6)(2013) 633-640.
- [20] H.X. Phu, Rough convergence in normed linear spaces, Numer. Funct. Anal. Optimiz. 22(2001) 199-222.

- [21] H.X. Phu, Rough continuity of linear operators, Numer. Funct. Anal. Optimiz. 23(2002) 139-146.
- [22] H.X. Phu, Rough convergence in infinite dimensional normed spaces, *Numer. Funct. Anal. Optimiz.* **24**(2003) 285-301.
- [23] A. Sahiner, M. Gurdal, F.K. Duden, Triple sequences and their statistical convergence, Selcuk J. Appl. Math. 8(2)(2007) 49-55.
- [24] A. Sahiner, B.C. Tripathy, Some I related properties of triple sequences, $Selcuk\ J.\ Appl.\ Math.$ $\mathbf{9(2)}(2008)$ 9-18.
- [25] T. Šalát, B. C. Tripathy, M. Ziman, On some properties of I-convergence, Tatra Mt. Math. Publ. 28(2004) 279-286.
- [26] E. Savas, A. Esi, Statistical convergence of triple sequences on probabilistic normed space, Ann. Uni. Craiova, Math. Compu. Sci. Series 39(2)(2012) 226-236.
- [27] E. Şavas, On I_{λ} -statistical convergence of weight g, API Conf. Proc. 1759 (2016) 1-5.
- [28] D. D. Stancu, A Method for Obtaining Polynomials of Bernstein type of two Variables, The American Math. Monthly, 70(3)1963) 260-264.
- [29] B.C. Tripathy, R. Goswami, On triple difference sequences of real numbers in probabilistic normed spaces, *Projectiones J. Math.* 33(2)(2014) 157-174.